68 resultados para IN-VIVO

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective
Constitutive activation of Stat5 has been observed in a variety of malignancies, particularly myeloid leukemias. To directly investigate the in vivo consequences of Stat5 perturbation, we expressed constitutively active forms in zebrafish.
Methods
We generated mutants of the zebrafish stat5.1 protein (N646H, H298R/N714F, and N714F) based on previously identified constitutively active mutants of murine Stat5a. The in vitro properties of these mutants were determined using phosphorylation-specific antibodies and luciferase reporter assays, and their in vivo effects were analyzed through microinjection of zebrafish embryos.
Results
Two of these stat5.1 mutants (N646H and H298R/N714F) showed increased tyrosine phosphorylation and transactivation activity compared to the wild-type protein. Expression of either mutant led to a range of hematological perturbations, which were more pronounced for the H298R/N714F mutant. Interestingly, expression of wild-type also produced generally similar phenotypes. Further analysis showed that expression of the H298R/N714F mutant led to increased numbers of early and late myeloid cells, erythrocytes, and B cells. Some nonhematopoietic developmental perturbations were also observed, but these were equally prominent with wild-type or mutant forms.
Conclusion
These data implicate Stat5 activity as a direct critical regulator of hematological cell proliferation, suggesting a causal role for constitutively-active Stat5 in the etiology of hematological malignancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present investigation was to quantify the fate of C18 and long chain polyunsaturated dietary fatty acids in the freshwater fish, Murray cod, using the in vivo, whole-body fatty acid balance method. Juvenile Murray cod were fed one of five iso-nitrogenous, iso-energetic, semipurified experimental diets in which the dietary fish oil (FO) was replaced (0, 25, 50, 75, and 100%) with a blended vegetable oil (VO), specifically formulated to match the major fatty acid classes [saturated fatty acids, monounsaturated fatty acids, n-3 polyunsaturated fatty acids (PUFA), and n-6 PUFA] of cod liver oil (FO). However, the PUFA fraction of the VO was dominated by C18 fatty acids, while C20/22 fatty acids were prevalent in the FO PUFA fraction. Generally, there was a clear reflection of the dietary fatty acid composition across each of the five treatments in the carcass, fillet, and liver. Lipid metabolism was affected by the modification of the dietary lipid source. The desaturation and elongation of C18 PUFAs increased with vegetable oil substitution, supported by the occurrence of longer and higher desaturated homologous fatty acids. However, increased elongase and desaturase activity is unlikely to fulfill the gap observed in fatty acid composition resulting from decreased highly unsaturated fatty acids intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently there are several contrasting methods utilized for estimating elongation and desaturation of fatty acids and their general metabolism. The majority of these methods involve an ex vivo approach, requiring expensive and sophisticated equipment, likely to result in considerable variation in enzyme activity between and within species. In the present paper we introduce a further development of the whole-body fatty acid balance method for the estimation of the elongation and desaturation of fatty acids. This method though receiving considerable attention because of its simplicity and reliability has yet to be presented in detail. Theoretically, the whole-body fatty acid balance method can potentially be applied to any organism and requires little more than a gas chromatography unit for fatty acid analysis and elementary calculations. As such in this paper we attempt to spell out in detail the theoretical basis and the methods of application drawing specific examples. Using the present method it is possible to measure the fate of individual fatty acids towards desaturation, elongation and oxidation and calculate the elongase, Δ-6 desaturase and Δ-5 desaturase activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective
To investigate tenocyte regulatory events during the development of overuse supraspinatus tendinosis in rats.

Methods
Supraspinatus tendinosis was induced by running rats downhill at 1 km/hour for 1 hour a day. Tendons were harvested at 4, 8, 12, and 16 weeks and processed for brightfield, polarized light, or transmission electron microscopy. The development of tendinosis was assessed semiquantitatively using a modified Bonar histopathologic scale. Apoptosis and proliferation were examined using antibodies against fragmented DNA or proliferating cell nuclear antigen, respectively. Insulin-like growth factor 1 (IGF-1) expression was determined by computer-assisted quantification of immunohistochemical reaction. Local IGF-1 signaling was probed using antibodies to phosphorylated insulin receptor substrate 1 (IRS-1) and ERK-1/2.

Results
Tendinosis was present after 12 weeks of downhill running and was characterized by tenocyte rounding and proliferation as well as by glycosaminoglycan accumulation and collagen fragmentation. The proliferation index was elevated in CD90+ tenocytes in association with tendinosis and correlated with increased local IGF-1 expression by tenocytes and phosphorylation of IRS-1 and ERK-1/2. Both apoptosis and cellular inflammation were absent at all time points.

Conclusion
In this animal model, early tendinosis was associated with local stimulation of tenocytes rather than with extrinsic inflammation or apoptosis. Our data suggest a role for IGF-1 in the load-induced tenocyte responses during the pathogenesis of overuse tendon disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-ß-D-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FAOX) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0–150 min), fasting dogs (n = 8) were infused with [3-3H]glucose followed by either 2-h saline or AICAR (1.5–2.0 mg·kg–1·min–1) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FAOX blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (Rd tissue), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCRg) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC~pSer221) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and Rd tissue responses were markedly attenuated, but MCRg and GF increased significantly. SkM substrates were unchanged, but ACC~pSer221 rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FAox blockade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 ± 6.4 years, 162.2 ± 5.1 cm, 69.1 ± 11.2 kg) and 19 without fractures (62.9 ± 7.9 years, 158.3 ± 4.4 cm, 59.3 ± 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate protein import into the mitochondria of Dictyostelium discoideum, green fluorescent protein (GFP) was fused as a reporter protein either to variable lengths of the N-terminal region of chaperonin 60 (the first 23, 40, 80, 97, and 150 amino acids) or to the mitochondrial targeting sequence of DNA topoisomerase II. The fusion proteins were expressed in AX2 cells under the actin-15 promoter. Fluorescence images of GFP transformants confirmed that Dictyostelium chaperonin 60 is a mitochondrial protein. The level of the mitochondrially targeted GFP fusion proteins was unexpectedly much lower than the nontargeted (cytoplasmic) forms. The distinction between targeted and nontargeted protein activities was investigated at both the transcriptional and translational levels in vivo. We found that targeting GFP to the mitochondria results in reduced levels of the fusion protein even though transcription of the fusion gene and the stability of the protein are unaffected. [35S]methionine labeling and GFP immunoprecipitation confirmed that mitochondrially targeted GFP is translated at much slower rates than nontargeted GFP. The results indicate a novel phenomenon, import-associated translational inhibition, whereby protein import into the mitochondria limits the rate of translation. The simplest explanation for this is that import of the GFP fusion proteins occurs cotranslationally, i.e., protein synthesis and import into mitochondria are coupled events. Consistent with cotranslational import, Northern analysis showed that the GFP mRNA is associated with isolated mitochondria. This association occurred regardless of whether the GFP was fused to a mitochondrial leader peptide. However, the presence of an import-competent leader peptide stabilized the mRNA-mitochondria association, rendering it more resistant to extensive EDTA washing. In contrast with GFP, the mRNA of another test protein, aequorin, did not associate with the mitochondria, and its translation was unaffected by import of the encoded polypeptide into the mitochondria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of the reported potential anti-inflammatory activity of the New Zealand green lipped mussel (NZGLM), we aimed to compare the effect of low dose marine oil supplementation, from mussels and fish, in reducing blood markers of inflammation. Thirty apparently healthy males and females were recruited from the general public in Melbourne, Australia to participate in a double blind, randomised, parallel intervention study. Subjects were consuming approximately 73 mg of omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) daily in their background diet prior to the commencement of the intervention. Subjects were randomly assigned to consume either 2 mL/day of the NZGLM oil preparation (mixed with olive oil and dl-alpha-tocopherol) or fish oil preparation (also mixed with olive oil and dl-alpha-tocopherol) for six weeks. Two mL of the oils contained 241 mg and 181 mg of n-3 LCPUFA, respectively. Neutrophil phospholipid fatty acids, serum thromboxane B2 (TXB2), stimulated monocyte production of prostaglandin E2 (PGE2), interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNFalpha) were measured. During the intervention, the total intakes of n-3 LCPUFA from the background diet and the supplements were 199 mg/d and 173 mg/day for the NZGLM and FO groups, respectively. Following six weeks of supplementation, both groups showed a small, but significant increase in neutrophil phospholipid proportion of eicosapentaenoic acid. The NZGLM group also showed a significant increase in docosahexaenoic acid levels. There were no significant changes with time or treatment for TXB2, PGE2, IL-1 beta or TNFalpha. This study showed that low dose supplementation with n-3 LCPUFA from two different marine oil preparations showed no difference in inflammatory markers in this group of healthy individuals. Further studies are warranted including dose response trials and studies in populations with inflammatory conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: This study was undertaken to explore the use of in vitro critical inhibitory concentration (CIC) as a surrogate marker relating the pharmacokinetic (PK) parameters to in vivo bactericidal synergistic effect [pharmacodynamic (PD)] of amikacin + piperacillin combination against Pseudomonas aeruginosa in a systemic rat infection model. METHODS: The in vitro antibacterial activities of amikacin and piperacillin, alone and in combinations at various ratios of the concentrations, were tested against a standard [5 x 10(5) colony-forming units (CFU)/ml] and a large (1.5 x 10(8) CFU/ml) inoculum of P. aeruginosa ATCC 9027 using a modified survival-time method. The CIC of each individual antibiotic for the different combinations was determined using a cup-plate method. In vivo studies were performed on Sprague-Dawley rats using a systemic model of infection with P. aeruginosa ATCC 9027. PK profiles and in vivo killing effects of the combination at different dosing ratios were studied. RESULTS: An inoculum effect was observed with the antibiotics studied. Synergy was seen against both the inocula at the following concentration ratios: 70% C(ami) + 30% C(pip) and 75% C(ami) + 25% C(pip), where C(ami) and C(pip) are the concentrations of amikacin and piperacillin to produce a 1000-fold decrease in bacterial population over 5 h, respectively. The CIC values determined corroborated with the order of in vitro bacterial killing observed for the antibiotic combinations. The dosing ratio of 12.6 mg/kg amikacin + 36 mg/kg piperacillin (a 70:30 ratio of the individual doses) exhibited the greatest killing in vivo when compared to the other ratios. The PK-PD relationships were described by simple, linear regression equations using the area under the in vivo killing curve as a PD marker and the AUCIC(ami)/CIC(ami) + AUCIC(pip)/CIC(pip), AUC(ami)/CIC(ami) + AUC(pip)/CIC(pip), C(max,ami)/CIC(ami) + C(max,pip)/CIC(pip), and AUCIC(ami)/MIC(ami) + AUCIC(pip)/MIC(pip) as PK markers for the amikacin + piperacillin combination. CONCLUSION: The combination of amikacin and piperacillin exhibited synergistic killing effect on P. aeruginosa that could be modeled using CIC as a surrogate marker relating the PK parameters to in vivo bactericidal effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Merozoite surface protein 8 (MSP8) has shown promise as a vaccine candidate in the Plasmodium yoelii rodent malaria model and has a proposed role in merozoite invasion of erythrocytes. However, the temporal expression and localisation of MSP8 are unusual for a merozoite antigen. Moreover, in Plasmodium falciparum the MSP8 gene could be disrupted with no apparent effect on in vitro growth. To address the in vivo function of full-length MSP8, we truncated MSP8 in the rodent parasite Plasmodium berghei. PbΔMSP8 disruptant parasites displayed a normal blood-stage growth rate but no increase in reticulocyte preference, a phenomenon observed in P. yoelii MSP8 vaccinated mice. Expression levels of erythrocyte surface antigens were similar in P. berghei wild-type and PbΔMSP8-infected erythrocytes, suggesting that a parasitophorous vacuole function for MSP8 does not involve global trafficking of such antigens. These data demonstrate that a full-length membrane-associated form of PbMSP8 is not essential for blood-stage growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary fatty acids are known to modulate fatty acid metabolism in fish. However, the innate capability of fish to bioconvert short chain fatty acids to health promoting long chain fatty acids (LCPUFA) is insufficient to compensate for a reduced dietary intake. While many studies have focused on the dietary regulation of the fatty acid bioconversion pathways, there is little known regarding the effects of the dietary levels of C18 polyunsaturated fatty acids (PUFA) on fatty acid metabolism. Here, we show a greater degree of apparent enzyme activity (Δ-6 desaturase) in fish fed a diet with higher amounts of dietary C18 PUFA. In particular, fish receiving high amounts of dietary C18 PUFA had a greater amount of Δ-6 desaturase activity acting on 18:3n-3 than 18:2n-6. However, with the gradual reduction of dietary C18 PUFA there was a shift in substrate preference of Δ-6 desaturase from 18:3n-3 to 18:2n-6. This information will provide valuable insight for the implementation of low fish oil diets, which permit the maintenance of n-3 LCPUFA levels in farmed Murray cod.